CUET UG - 2022

Mathematics/Applied Mathematics

Question: 1

The function $f: R - \{-1\} \to R$ defined as $f(x) = \frac{x-1}{x+1}$ is increasing in the interval:

- A (0, ∞)
- B (-1, ∞)
- C (-∞, 0)
- $\mathbf{D} \quad (-\infty, \infty) \{-1\}$

Question: 2

If A and B are two independent events with $P(A) = \frac{3}{5}$ and $P(B) = \frac{4}{9}$, then

 $P(A' \cap B')$ is equal to:

- $A \frac{4}{15}$
- $\frac{1}{5}$
- $\frac{1}{3}$
- $\frac{D}{9}$

LEARNING

Question: 3

The range of function $f(x) = x^2 - 2x + 2$; $x \in \mathbb{R}$ is:

- A [1, ∞)
- B (0, ∞)
- C (-∞, ∞)
- D [-1, ∞)

Two cards are randomly drawn from a well shuffled pack of 52 cards without replacement. The mean of, distribution of number of kings, is:

- A 33 221
- 13
- D

Question: 5

In an LPP, with the constraints are $x - 3y \ge 0$, $y \ge 0$, $0 \le x \le 3$. The feasible region 18:

- A not lies in the first quadrant.
- bounded and lies in the first quadrant.
- C unbounded in the first quadrant.
- D an empty set.

Question: 6

The points on the curve $\frac{x^2}{9} + \frac{y^2}{64} = 1$ at which the tangents are parallel to the x-

axis are:

- $A (0, \pm 3)$
- B (±8, 0)
- C (0, ±8)
- $D (\pm 3, 0)$

If A is a square matrix of order 2×2 and |A| = 7, then value of |2 Adj.(A)| is:

- A 21
- B 28
- C 14
- D 7

Question: 8

The number of all non-zero matrices of order 2×3 with each entry -1, 0, 1 is:

- A 27
- B 243
- C 728
- D 729

Question: 9

If A is square matrix such that $A^2 = A$, then $(I + A)^3 - 7A$ is equal to:

- A A
- B I-A
- CI
- D 3A

If
$$y = 3e^{2x} + 2e^{3x}$$
, then $\frac{d^2y}{dx^2} - 5\frac{dy}{dx}$ is equal to:

- A 6y
- B 6y
- C 5y
- $\mathbf{D} = 4y$

The sum of order and degree of differential equation

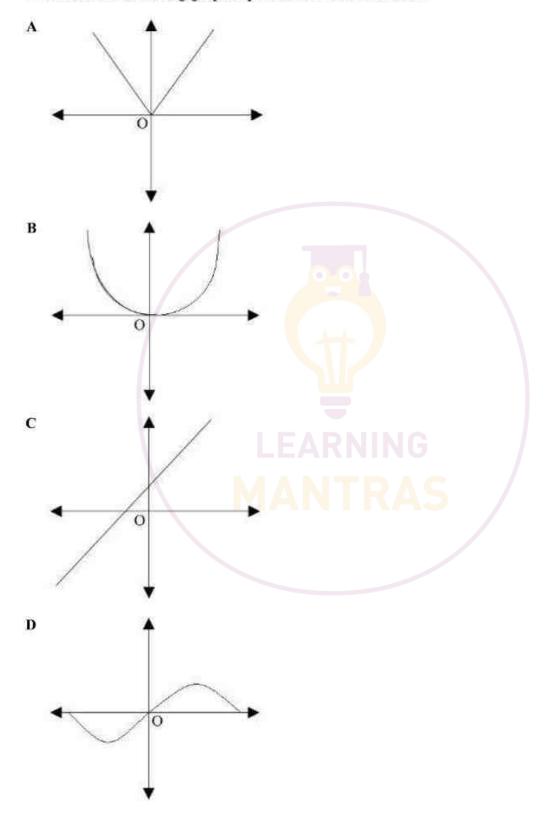
$$2\sqrt{\frac{d^2y}{dx^2}} + \left(\frac{dy}{dx}\right)^3 = 0$$

is:

- A 4
- B 3
- C 2.5
- D 5

Question: 12

The area of the region bounded by the curves $y^2 = x$ and y = x is:


- $A \frac{1}{2}$
- $\frac{B}{3}$
- $\frac{1}{6}$
- $\frac{D}{12}$

Question: 13

Let R be the relation on the set $\{1, 2, 3, 4\}$ defined by R = $\{(1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (1, 4), (4, 1)\}$. Then R is:

- A Reflexive but not symmetric
- B Symmetric but not transitive
- C Transitive but not reflexive
- D Equivalence Relation

Question: 14
Which of the following graph represent one-one function?

If
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $A^2 - \lambda A - I = 0$, then the value of λ is:

- A 4
- B 1
- C -4
- D -1

Question: 16

The principal value of tan⁻¹(-1) is:

$$\int_0^{\frac{\pi}{2}} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} dx =$$

- Α π

- D 2π

$$\int \frac{x^3 \sin{(tan^{-1}x^4)}}{1 + x^8} dx =$$

$$\frac{A}{4}\cos(tan^{-1}x^4) + C$$

$$\frac{\mathbf{B}}{-\frac{1}{4}}\cos(tan^{-1}x^4) + C$$

C
$$4\sin(\tan^{-1}x^4) + C$$

$$-\frac{1}{4}\sin(tan^{-1}x^4) + C$$

$$\sin\left(tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)\right) =$$

$$\frac{A}{2} \frac{1+x}{2}$$

B
$$\sqrt{1+x}$$

$$\frac{1+x}{2}$$

$$\int_{0}^{\infty} \frac{1-x}{2}$$

Match List I with List II

Let R⁺ be the set of all positive real numbers:

List I	List II	
A. $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = x^2$	I. One-one and onto	
B. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4$	II. One-one but not onto	
C. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x$	III. Neither one-one, nor onto	
D. $f: R \to R^+, f(x) = x^2$	IV. Not one-one but onto	

Choose the correct answer from the options given below:

- A A-III, B-II, C-I, D-IV
- B A-I, B-II, C-III, D-IV
- C A-II, B-III, C-I, D-IV
- D A-IV, B-I, C-III, D-II

Question: 21

If
$$P = \begin{bmatrix} 2 & -1 & 3 \\ -4 & 5 & 1 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 2 & 3 \\ 4 & -2 \\ 1 & 5 \end{bmatrix}$, then:

- A. PQ is defined and it is 2×2 matrix.
- B. QP is not defined.
- C. PQ is not defined while QP is defined and 2×2 matrix.
- D. QP is defined and it is 3×3 matrix.

Choose the correct answer from the options given below:

- A A, B only
- B C only
- C A, D only
- D B only

Let
$$A = [aij]_{2\times 2}$$
 where $a_{ij} = \begin{cases} 1, & i \neq j \\ -1, & i = j \end{cases}$ then:

$$A A^9 = 256 A$$

B
$$A^6 = -16 A$$

$$C A^9 = -64 A$$

D
$$A^6 = 32 A$$

If
$$A = \begin{bmatrix} 0 & a & 8 \\ 5 & 0 & b \\ c & -12 & 0 \end{bmatrix}$$
 is a skew symmetric matrix then value of $a + b + c$, is:

$$A - 9$$

$$\mathbf{p} - 1$$

Question: 24

If P is matrix of order 3 with |P| = -2, then $|-5P^{-1}|$ is equal to:

$$\frac{A}{2}$$
 $-\frac{5}{2}$

$$\frac{B}{2}$$

$$\frac{\mathbf{c}}{2}$$

$$-\frac{125}{2}$$

If the function
$$f(x) = \begin{cases} \frac{e^{ax}-1}{x}, & x \neq 0 \\ \frac{\dot{k}}{2}, & x = 0 \end{cases}$$

is continuous at x = 0, then the value of k is equal to:

- A 2
- B 3
- C 6
- 12

The function
$$f(x) = \log_e(x) - 2\left(\frac{x-1}{x+1}\right)$$
; $x > 0$ is:

- A strictly increasing in $(0, \infty)$
- strictly decreasing in (0, 1)
- There exists $x_0, x_1 \in (0, \infty), x_0 \neq x_1$ such that $f(x_0) = f(x_1) = -1$
- **D** f''(1) = 2

Question: 27
$$\int_{\frac{1}{2}}^{1} \frac{\sqrt{x-x^2}}{x^2} dx =$$

$$A = \frac{3}{2}$$

$$^{\mathbf{B}} \quad \frac{1}{3} \left(2 - \frac{1}{\sqrt{2}} \right)$$

$$\frac{\mathbf{C}}{3}$$

$$D \frac{2}{3}$$

The solution of the following differential equation

$$y dx - (x + 2y^2)dy = 0, y > 0$$
 is:

$$A \quad x = 2y^2 + Cy$$

$$\mathbf{B} \quad y = 2x^2 + Cx$$

$$C xy = x^2 + Cy$$

$$\mathbf{D} \quad \mathbf{x} = \mathbf{y}^2 + C\mathbf{y}$$

Question: 29

Let P be the plane passing through the point (1, 2, 3) and perpendicular to the line $\frac{x-2}{1} = \frac{y-3}{-1} = \frac{z-4}{2}$. Then the distance of the point (3, -2, -3) from the plane P is:

$$A \frac{4}{\sqrt{6}}$$

$$B \sqrt{6}$$

$$c \frac{1}{\sqrt{6}}$$

D 6

Question: 30

Equation of the plane that contains the line $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{1}$ and perpendicular to the plane 3x-y-z+7=0 is:

A
$$2x - y - z + 1 = 0$$

$$\mathbf{B} \quad 4x - y - 2z + 3 = 0$$

$$\mathbf{C}$$
 $x - 4y + 7z - 12 = 0$

$$\mathbf{p} \quad x + 4y - 7z + 10 = 0$$

For two events A and B with $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(A \cap B) = \frac{1}{4}$ and $P(A' \cap B')$ is equal to:

Question: 32

When 3 coins are tossed simultaneously, the probability of having at most 3 heads

- A 0
- 1 B
- C
- D

Question: 33

A box has 20 paper slips having a number from 1-20 written on it. One slip is chosen at random from the box. The probability that the chosen slip has a composite number on it, is:

- A 2 5
- 20
- D 1 $\bar{2}$

If the random variable X has the following probability distribution:

X	-1	0	1	2
P(X = x)	k	2k	3k	<u>k</u>
				2

then $P(X \le 0)$ is equal to:

- $\begin{array}{c} A & 6 \\ \hline 13 \end{array}$
- $\begin{array}{c} \mathbf{B} & \frac{4}{13} \end{array}$
- $\frac{2}{13}$
- $\frac{D}{7}$

Question: 35

If A is non singular matrix of order 3, then which of the following is not correct :

- $(aA)^{-1} = \frac{1}{a}A^{-1}, a \neq 0$
- $B |A^{-1}| = |A|^{-1}$
- $(A^3)^{-1} = (A^{-1})^3$
- **D** $Adj.(A) = |A|^2$

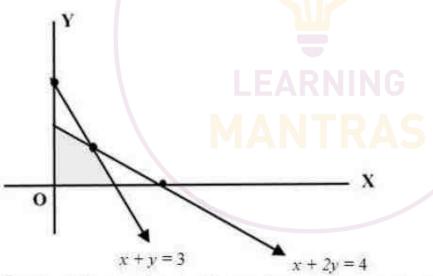
Question: 36

A fair die is thrown. If E is the event that 'the number appearing is a multiple of 3' and F be the event that 'the number appearing is even'. Then choose the correct option given below:

- $P(F) = \frac{1}{3}$
- $\mathbf{B} \ P(E \cup F) = \frac{1}{2}$
- C E and F are mutually disjoint events.
- D E and F are independent events.

A line y = x partitions the circle $(x - a)^2 + y^2 = a^2$, a > 0 in two parts. The area of the major segment is:

$$\frac{A}{4} \frac{3\pi a^2}{4}$$


$$\frac{a^2}{4}(4\pi-1)$$

C
$$\frac{a^2}{4}(\pi+3)$$

$$\frac{a^2}{4}(3\pi+2)$$

Question: 38

The feasible region for LPP is the shaded region in the figure below.

Let the objective function be z = 3x + 4y, then maximum value of z is:

A 8

B 10

C 9

D 17

A businessman deals with two items X and Y. He has storage for almost 200 items. He needs to setup the business with a minimum capital of ₹ 50000. Items X and Y cost ₹ 1000 and ₹ 2000 each respectively. There should be at least 20 items of type X where quantity of item Y must not exceed three times the quantity of item X available. The constraints of the LPP corresponding to the above situation are represented by:

- A. $x + y \le 200$
- B. $3x-y \ge 0$
- C. $x + 2y \le 50$
- D. $x \le 20$
- E. $y \ge 20$

Choose the correct answer from the options given below:

- A A and B only
- B A, B and C only
- C A, B, C and D only
- D A, C and E only

Question: 40

The optimal value of the LPP max(z) = x + 2y subject to constraints

$$x + 3y \le 30$$

$$x - 5y \le -30$$

 $x \ge 0$

$$y \ge 0$$

is:

- A 22
- B 30
- C 22.5
- D 20

Passage:

Kavya on her birthday decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got $\stackrel{?}{\underset{?}{$\sim}}$ 10 more. However, if there were 16 children more, everyone would have got $\stackrel{?}{\underset{?}{$\sim}}$ 10 less. Let the number of children be x and the amount distributed by Kavya for one child be $\stackrel{?}{\underset{?}{$\sim}}$ y.

Based on the above information, answer the question:

Question: 41

The equations in terms x and y are:

$$\mathbf{A} \quad 5x + 4y = 40; \ 5x + 8y = 80$$

B
$$5x - 4y = 40$$
; $5x - 8y = -80$

C
$$5x - 4y = 40$$
; $5x + 8y = -80$

D
$$5x + 4y = 40$$
; $5x - 8y = 80$

Question: 42

The conditions given the problem can be represented by :

$$\begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ -80 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ -80 \end{bmatrix} LEARNING$$

$$\begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ 80 \end{bmatrix}$$

$$\begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -40 \\ -80 \end{bmatrix}$$

Question: 43

The number of children who were given some money by Kavya, is:

- A 30
- B 32
- C 28
- D 40

The amount (in Rs.) given to each child by Kavya is:

- A 30
- B 26
- C 32
- D 60

Question: 45

The amount (in ₹), Kavya distributed to the children in the orphanage is:

- A 609
- B 690
- C 906
- D 960

Passage:

The floor of the banquet hall in a hotel is made of polished stone. There is a large chandelier attached to the ceiling of the hall. Consider floor of the hotel as a plane having the equation x - y + z = 4 and chandelier is suspended at the point (1, 0, 1) from the wall.

On the basis of above information, answer the following questions.

Question: 46

The direction ratios of the perpendicular from the point (1, 0, 1) to the plane x - y + z = 4

- A (-1, -1, 1)
- B (1, 1, -1)
- C (1, -1, 1)
- D (1, -1, -1)

The length of the perpendicular from the point (1, 0, 1) to the plane x - y + z = 4 is

- A 1
- $\frac{2}{\sqrt{3}}$
- $C = \frac{1}{\sqrt{3}}$

D 2

Question: 48

The equation of the plane in the banquet hall parallel to the x - y + z = 4, and at a unit distance from the point (1, 0, 1), is:

A
$$x - y + z = 6 + \sqrt{3}$$

B
$$x - y + z = 2 - \sqrt{3}$$

$$C x - 2y + z = 4$$

D
$$x - y + z = 4 - \sqrt{3}$$

Question: 49

The equation of the perpendicular from the point (1, 0, 1) to the plane x - y + z = 4 is:

A
$$\frac{x}{1} = \frac{y-1}{1} = \frac{z-1}{-1}$$
 MANTRAS

$$\frac{\mathbf{B}}{1} = \frac{y}{-1} = \frac{1-z}{-1}$$

$$\frac{\mathbf{C}}{-1} = \frac{y-1}{1} = \frac{z}{1}$$

$$\frac{\mathbf{D}}{1} = \frac{y}{-1} = \frac{1-z}{1}$$

The direction cosine of the normal to the plane x - y + z = 4 are:

A
$$\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}$$

