

Handwritten Notes

On Theory of Equations

Н.	Equations, Inequations &
F1 .	Expressions.
*	Linear equal: $ax + b = 0$, $a, b \in \mathbb{R}$, $a \neq 0$.
	$root (unique) = -\frac{b}{a}$
*	Quadratic equil: $qx^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$, $a \neq 0$.
	moots = $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $b^2 - 4ac = D = discommendant.$
*	guadratie equin - nature of roots:
	1. If a, b, c ER, a = 0, then a) If D<0, then non-
	reak complex roots, b) 95 D>0 then real,
	distanct roots. $ax^2 + bx + c = a(x-x_1)(x-x_2)$.
	c) If D=0, then real & equal roots
	2. Dis sperfect square of a rational number,
	then roots are rational; not a perfect
	square then ane grational.
	3. 95 one root Es ptig then the other p-ig.
	4. If one root be p+19 other will be p-19.
	9. If a=1, b, c e I R the moots are rational,
	then they must be integers.
	6. If more than two roots then a=b=e=0
*	Relation between roots & coefficients:
	If a & B be the roots,
	y = -b/a y = -b/a
	$\chi^2 - (\alpha + \beta) \chi + \alpha \beta = 0.$
ł	Quadratic expression: $(ax^2 + bx + c)$ a, b, c $\in \mathbb{R}$, $a \neq 0$.
	$f(x) = ax^2 + bx + c$

* condition for common roots: a2+bx+c=0 a.a'≠0
$\frac{1}{a'} \neq \frac{b}{b'}$
• one root common - $(bc' - b'c)(ab' - a'b) = (ca' - c'a)^2$
$-lwo roots common - \frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$
* Graph of a quadratic expression : $f(x) = ax^2 + bx + c = y$.
$\frac{(y + \frac{D}{4a}) = a \left(x + \frac{b}{2a}\right)^2 \left y + \frac{D}{4a} = Y, x + \frac{b}{2a} = X (a \neq 0).$
$Y = a x^2 \implies x^2 = \frac{1}{a} \cdot \dot{Y}$
1. y=f(x) Fs parabolic.
2. axts of parabola $X = 0$, $2 = -\frac{b}{2a}$.
3. If a>o, the parabola opens upwards;
aro, opens downwards.
4. i) Intersection with x axts -
$ax^2 + bx + c = 0 \qquad \Rightarrow \qquad x = \frac{-b \pm \sqrt{D}}{2a}$
for I) D=0, $\alpha = -\frac{b}{2a}$
MANTRayo, $D=0$ $a<0, D=D$.
I) D>0, $\alpha, \beta = \frac{-b \pm \sqrt{D}}{2a}$
a>0,D>0 a<0,D>0.
III) $D < 0, \alpha, \beta = \frac{-b \pm \sqrt{D}}{2a}$ [imaginary, doesn't cut α axis].
$\overline{\bigcirc}$
a>0,0<0 a<0,0<0.
ü) Intergration with y axis - y = c.

$$\frac{g_{1}g_{1}}{f_{1}} = \left(-\frac{b}{2a}, -\frac{b}{4a}\right).$$
5. Verdex of parabola = $\left(-\frac{b}{2a}, -\frac{b}{4a}\right).$
for $a > 0$, then $f(a)$ has least value at $x = -\frac{b}{2a}$,
$$f\left(-\frac{b}{2a}\right) = -\frac{D}{4a}.$$
for $a < 0$, then $f(a)$ has greatest value at $x = -\frac{b}{2a}$,
$$f\left(-\frac{b}{2a}\right) = -\frac{D}{4a}.$$
for $a < 0$, then $f(a)$ has greatest value at $x = -\frac{b}{2a}$,
$$f\left(-\frac{b}{2a}\right) = -\frac{D}{4a}.$$

$$\left(-\frac{b}{2a}\right) = -\frac{D}{4a}.$$
for $a < 0$, then $f(a)$ has greatest value at $x = -\frac{b}{2a}$,
$$\left(-\frac{b}{2a}\right) = -\frac{D}{4a}.$$

$$\left(-$$

0

M

*

1. Conditions for a number k (If both roots are less than k). i) $D \ge 0$ i) $a = f(k) \ge 0$ iii) $k \ge -\frac{b}{2a}$ i) $a = \frac{b}{2a}$ iii) $k \ge -\frac{b}{2a}$ iii) $k \ge -\frac{b}{2a$ (-1/2a, - 1/4a) where & < B.

2. Condition for a number
$$K$$
 (both roots > k).
1) $D \ge 0$.
ii) $af(k) > 0$. $f(y) = \frac{a > 0}{k < \frac{1}{2a} / 2}$
iii) $k < -\frac{b}{2a}$
where $\alpha \le \beta$.
2. Condition for a number K ($\alpha < k < \beta$).
ii) $af(k) < 0$
ii) $af(k) < 0$
iii) $af(k) < 0$
where $\alpha < \beta$.
4. Condition for numbers $k_1 & k_2$ (9f one root
here $n = noterval (k_1, k_2)$):
i) $D > 0$
ii) $f(k) \cdot f(k_2) < 0$
where $\alpha < \beta$.
5. Condition for numbers $k_1 & k_2$ (9f one root
here $n = \alpha < \beta$.
5. Condition for numbers $k_1 & k_2$ (9f one root
where $\alpha < \beta$.
5. Condition for numbers $k_1 & k_2$ (9f both root
confined between $k_1 & k_2$ (9f both root
ii) $af(k_1) > 0$
iii) $af(k_1) > 0$
iv) $k_1 < -\frac{b}{2a} < k_3$
where $\alpha < \beta$.
5. Condition for numbers $k_1 & k_2$ (9f both root
iii) $af(k_1) > 0$
iii) $af(k_1) > 0$
iv) $k_1 < -\frac{b}{2a} < k_3$
where $\alpha < \beta$.
5. Condition for numbers $k_1 & k_2$ (9f both root
iii) $af(k_1) > 0$
iii) $af(k_1) > 0$
iii) $af(k_1) < 0$.
iv) $k_1 < -\frac{b}{2a} < k_3$
where $\alpha < \beta$.
5. Condition for numbers $k_1 & k_2$ (9f k_1 , k_3 lie
between the roots).
i) $D > 0$
ii) $af(k_1) < 0$.
iii) $af(k_2) < 0$
where $\alpha < \beta$.

SIE

* Wavy Curve Method: $F(x) = (x - a_1)^{\kappa_1} (x - a_2)^{\kappa_2} ... (2 - a_n)^{\kappa_n}$ $a_1 < a_2 < a_3 < \dots < a_{n-1} < a_n$

$$f(x) = \frac{(x-a_1)^{n_1} (x-a_2)^{n_2} \dots (x-a_k)^{n_k}}{(x-b_1)^{m_1} (x-b_2)^{m_2} \dots (x-b_p)^{m_p}}$$

Marking the numbers $0_1, a_2, ..., a_n$ on the real axis, and plus sign in the interval of the right of the largest of these numbers, ie, on the right of an. If the terr is even then we put plus sign on the left of an. When passing through the point and the polynomiat changes sing sign if k_{n-1} is an even humber, f(x) has some sign if k_{n-1} is an even humber.

* Equations of higher degree:

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0.$$
 $(a_0 \neq 0)$
of a_1, a_2, \dots, a_n be Ph roots, then.

$$\sum \alpha_1 \alpha_2 \dots \alpha_p = (-1)^p \frac{\alpha_p}{\alpha_0}$$

* Trimomial Equations: $a\chi^{2n} + b\chi^{n} + c = 0$, $a \neq 0$. for n=2 the trimomial 95 called a biquadratic equation.

* Equiles which can be reduced to linear,
quadratic & biquadratic equipe:
I.
$$(n-0)(n-b)(n-c)(n-d) = A$$
.
When $a < b < c < d$, $b-a = d-c$, $can be solved$
by change of variable.
 $y = \frac{(n-0) + (n-b) + (n-c) + (n-d)}{4}$
 $y = x - \frac{0 + b + c - id}{4}$.
I. $(n-a)(x-b)(n-c)(n-d) = Ax^2$. when $ab = cd$,
can be reduced to a collection of two
quadratic equations o by a change of variable
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A$ by substitution
 $y = (2-0) + (2-b)^{1} = A^{1} = A^{2} + b_{2}x + c = C$ is $\frac{2}{9(2)} = 0$. $P(x) R G(x)$ are
 $\frac{2}{9(x)} \neq 0$.
 $\frac{2}{9(x)} = 0$. $P(x) R G(x)$ are
 $\frac{2}{9(x)} \neq 0$.
 $\frac{2}{9(x)} = 0$. $P(x) R G(x)$ are
 $\frac{2}{9(x)} \neq 0$.
 $\frac{2}{9(x)} = 0$. $P(x) R G(x)$ are
 $\frac{2}{9(x)} \neq 0$.
 $\frac{2$

* Equations containing absolute values: $|\mathbf{x}| = \mathbf{x} , \text{ if } \mathbf{x} \ge \mathbf{0} .$ 121 = - x , if x 20. form 1: f(1x1) = g(x). is equivalent to the systems. f(x) = g(x) if $x \ge 0$ f(-x) = g(x) if x < 0. forman 2: $|f(x)| = g(x) = \begin{cases} f(x) = g(x), & \text{if } g(x) \ge 0\\ -f(x) = g(x), & \text{if } g(x) \ge 0. \end{cases}$ form 3: $h(1f(x)1) = g(x) = \begin{cases} h(f(x)) = g(x), f(x) \ge 0 \\ h(-f(x)) = g(x), f(x) < 0 \end{cases}$ form 1: |f(x) + g(x)| = |f(x)| + |g(x)| = $f(z) = (z) \Rightarrow 0.$ form S: $|f_1(x)| + |f_2(x)| + |f_n(x)| = g(x)$. first find all critical points, then graph start with the sign if coefficient of x 55 the.

4

For More PDFs Visit: LearningMantras.com

М.