

Handwritten Notes On Hybridization

Hybridization

Hybridization is a mathematical model that helps us to explain the bonding in organic molecules.

Hybridization is "mixing" of the orbitals resulting in "averaging" of the orbitals & giving the "hybrids".

Important: # of AO = # of MO

How do we determine the hybridization?

The quick way of determining hybridization is to count the groups around the atom:

of groups

of
$$970^{5}$$
 mybridization

 $+C \leftarrow 4$ groups

 $+C \leftarrow 3$ groups

 $+C \leftarrow 3$ groups

 $+C \leftarrow 3$ groups

 $+C \leftarrow 3$ groups

We count ē pairs as "group" for the hybridization purposes:

When an electron pair is next to a T-bond, the \bar{e} pair is going to resonancely conjugate with the \bar{t} bond. The resonance requires the \bar{e} 's to be on the p orbital shifting the hybridization to a lower value.

For More PDFs Visit: LearningMantras.com

sp-Hybridization

- mixing one s & one p orbitals gives two sp orbitals & leaves two p orbitals unused.

sp-hybridized orbitals form a linear shape

Sp2-Hybridization

- mixing one s & two p orbitals gives three sp^2 orbitals & one unused p orbital still remains.

Sp²-hybridized orbitals form a trigonal planar shape

Examples:

looks like sp³ actual sp²

looks like sp³ actual sp²

BUT

~ these e's are localized => are not a part of resonance => still sp²

The difference blue the sp3, sp2, & sp orbitals:

Orbital length (not to scale)

Sp³ > sp² > sp Clongest