Handwritten Notes On Hybridization ## Hybridization Hybridization is a mathematical model that helps us to explain the bonding in organic molecules. Hybridization is "mixing" of the orbitals resulting in "averaging" of the orbitals & giving the "hybrids". Important: # of AO = # of MO How do we determine the hybridization? The quick way of determining hybridization is to count the groups around the atom: # of groups # of $$970^{5}$$ mybridization $+C \leftarrow 4$ groups $+C \leftarrow 3$ groups $+C \leftarrow 3$ groups $+C \leftarrow 3$ groups $+C \leftarrow 3$ groups We count ē pairs as "group" for the hybridization purposes: When an electron pair is next to a T-bond, the \bar{e} pair is going to resonancely conjugate with the \bar{t} bond. The resonance requires the \bar{e} 's to be on the p orbital shifting the hybridization to a lower value. For More PDFs Visit: LearningMantras.com ## sp-Hybridization - mixing one s & one p orbitals gives two sp orbitals & leaves two p orbitals unused. sp-hybridized orbitals form a linear shape ## Sp2-Hybridization - mixing one s & two p orbitals gives three sp^2 orbitals & one unused p orbital still remains. Sp²-hybridized orbitals form a trigonal planar shape ## Examples: looks like sp³ actual sp² looks like sp³ actual sp² BUT ~ these e's are localized => are not a part of resonance => still sp² The difference blue the sp3, sp2, & sp orbitals: Orbital length (not to scale) Sp³ > sp² > sp Clongest