

Handwritten Notes

On Ellípse

Ellipse

* Ellipse: Locus of a point which moves on a plane such that its distance from a fixed point is a constant ratio toom a fixed line & this ratio, e<1. * Handard Equation of Ellipse: Pireolar Directorx $\frac{q^2}{r^2} + \frac{y^2}{r^2} = 1.$ (0,6) b^{-} where $b^{2} = a^{2}(1-e^{2})$. (-2,0) (-2,0) (a,0) (a,0) (9/e,0) (0,-b) (0,-b) $\chi = -\frac{\alpha}{2}$ * Length of Latus rectum! i) for entipse $\frac{x^2 + y^2}{a^2 + b^2} = 1$, $LR = \frac{2b^2}{a}$. ii) for ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \left(0 \times a \times b \right), LR = \frac{2a^2}{b}$. L (ae, b/a) (ac,o) L' (ae, - b/a) * If P is a point on ellipse $\frac{\chi^2}{a^2} + \frac{y^2}{h^2} = 1$ with foci S du s' then PS+PS'=2a = Constant. * Let $P(x_1, y_1)$ be a point $k = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$ be an ellipse, then i) P lies on erlipse \$\$ \$1=0 ii) P lies inside the ellipse (> Sj <0, m) P lies outside ellipse ⇔ S,>0.

M

* The equation of langent to the etlipse
$$S=0$$

at $P(x_1, y_1)$ is $g_1 = 0$. The equation of normal to the etlipse $g=0$
at $P(x_1, y_1)$ is $\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$.
* The condition that the line $y = mx + e$
may be a tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 $c^2 = a^2m^2 + b^2$.
• Equiv at tangent — in form —
 $y = mxe \pm \sqrt{a^2m^2 + b^2}$
boost of contact $\left(-\frac{a^2m}{c}, \frac{b^2}{c}\right)$.
* Two tangents can be drawn to aw
ellipse from aw external point.
* Director Circle: Points of intersection
to an ellipse $S=0$ (res on a circle,
concentoric with the ellipse, called
discetor circle.
 $gue^n - a^2 + y^2 = a^2 + b^2$.

*
$$equility of -langent and P(0)$$
 on ellipse $S=0$
or $\frac{\alpha}{a} cor\theta + \frac{1}{b} sin\theta = 1$.
* $equility of normal and P(\theta)$ on ellipse $S=0$
* $equility of normal and P(\theta)$ on ellipse $S=0$
* $equility of -\frac{by}{snn\theta} = a^2 - b^2$.
* Four normals can be drawn from any
point to the ellipse of sum of the

eccentorie angles of their feet To odd multiple of TC.

> LEARNING MANTRAS