

Handwritten Notes

On

Chemical Thermodynamics

Chemical Thermodynamics.

System Rest is gystem + surrounding = Sassounding Universe > Imaginary / Real boundary. The Zeroth Law of Thermodynamics: When two systems are in thermal equi-librium, then both have the same temperature. The First Law of Theomodynamics: dU = SQ + SW (d → total differentiat, S → partial differential). In practical, AU = Q+W. [U is internal energy, Q - heat, W - Work] [statement of Conservation of Energy]. * Some basics: Isolated system: exchanging neither matter nor energy with surrounding.

- · Closed: exchaning only energy. (U) · Open: occhanging both (matter & energy).
- · Homogeneous & Hoterogeneous System (Same or different shase).
- Heat: When delivered to system positive, otherwise negative.

· Work: When done on system - paritive, otherwise negative.

• Intensive & Extensive Thermodynamic. quantities-Intensive are those whose value do not change when system is divided into sub-systems. Extensive one those whose value is proportionet to the amount of substance. (at cous. ThP).

· C.

#

*

*

	1 Israction D	6 the process no a very skight	change of
	· Name of Process	Conctant Quantity	Symbol
	Isother mal	Temperature	[+]
	Isobaric	Pressure	[P]
	Iso choric	Volume	$\lfloor v \rfloor$
	Adiabetic	Heat	[ad]
	Isentropic	En-loopy	ts]
	Scenthabpic	Enthalpy	[H]
	Poly tropic	Heat copacity	
	Continued - LE	ARNING	2
*	dU = dQ - pdV	exchanges reversib.	le
	If Frochoric, DI	Volume	
*	34 follous from		٤' ا-
•	ampossible to	construct perp	etual
	motion machine	, of frost type.	
*	Crand low of	Thermody namics.	$ds = \frac{\delta Q}{T}$
	[3 -> Entropy] for	irreversible, as $> \frac{8Q}{T}$	(reversione)
		$41S > \frac{3}{T}$	on be used.
	At follows 1 2000	process. then c the law, Et's	impossible
	to construct	perpetual machine	, 2not type,
	gains heat he con	wests into work with	out loss.

C	homical	Thermodynamics.	
-			

· C

*	Entropy is the degree of disorder m the movement of molecules.
lain a	
*	The Third Law of Theomodynamics: 2im S=0.
	It monplies OK cannot be attained by any process. Theoretically, at a temperature
	tending to OK, the entropy is zero.
*	Enthatpy: It is a state function,
	(unit J). $H = U + pV$
	If system exchanges only hart h
	reversible volume work, dH = SQ + Barreversible
	If Fobaric, dH = 8Q DH = Q
	$\Delta H = \Delta U + nR \Delta T$
*	Hermontz energy: F, state function
	(unit J) $F = U - TS.$
	during reversible rothermal process, AF=W
	For isothermal, For non-isothermal,
	$\Delta F = \Delta U - T_2 S_2 + T_1 S_1$
*	Gibbs Energy: G, state function, G = H - TS.
	(unit J) = H - TS = U + pV - TS = F + pV
	$\Rightarrow \Delta G = \Delta F + \Delta (Pv) = \Delta F + P_2 \sqrt{2} - P_1 \sqrt{3}$
	- Ly Et a anversible]
	$\Delta q = W + p \Delta V [T, p, reversible].$
*	Heat Capacities: $C = \left(\frac{\delta Q}{\delta T}\right)_{\text{process.}}$
	(Unit J/K). Esochoric $C_v = \left(\frac{SQ}{\delta T}\right)_{forchoric} = \left(\frac{SU}{\delta T}\right)_v$ isobaric $C_p = \left(\frac{SQ}{\delta T}\right)_{trobaric} = \left(\frac{SU}{\delta T}\right)_p$.
at an	$\delta s \circ b a r c C_p = (\underline{SQ}) - (\underline{SU})$
1	$C_{p} = \frac{C_{p}}{D}$, $C_{Vm} = \frac{C_{V}}{C_{V}}$, T_{adams} , T_{adams}
	$C_{pm} = \frac{C_p}{n}$, $C_{vm} = \frac{C_v}{n}$. [Intensive now, molar heat capacity]

2

* State functions give exact differential,
that can be undegraded over timits.

$$\int_{a}^{b} dU = U_{b} - U_{a} \quad bit \int dW = W, \text{ because}$$

$$W \quad depends \quad on the path followed.$$
* for acversible extension, $P_{ext} = P_{int}$

$$W_{rev} = -\int_{V_{1}}^{V} P_{ext} dV = -\int_{V_{1}}^{P} P_{ext} dV.$$
* for graneversite extension, $W_{ing} = -\int_{V_{1}}^{P} P_{ext} dV.$
* Wrev > Wins.

$$= -P_{ext} (V_{2}-Y)$$
* Work an different processes.
) Itobaric - W = -P_{ext} \Delta V = -nR (T_{2}-T_{1}).
W = mgR = -p^{\Delta V}.
* We may $R = 0$, $q = -M = 2\cdot303$ mRT log $\frac{P}{P_{2}}$
* $\Delta U = 0, \Delta H = 0$, $q = -M = 2\cdot303$ mRT log $\frac{P}{P_{2}}$
* $\Delta U = 0, \Delta H = 0$, $q = -M = 2\cdot303$ mRT log $\frac{P}{P_{2}}$
* $M_{securritistic - M = -mRT [1 - \frac{P_{3}}{P_{1}}].$
* $\Delta U = 0, \Delta H = 0$, $q = 0$, $W = \Delta U = nC_{V} \Delta T.$
* $M = \Delta U + P\Delta V.$
* $M = M = AU = nC_{V} \Delta T.$
* $\Delta H = \Delta U + PA V.$

22.2

c.	Chemical Thermodynamice. 3.
*	Chemical Thermodynamice. 3. $\Delta H = \Delta U + \Delta n_g RT$
*	theat capacity, $c = \frac{\Delta q}{\Delta T}$, $c_v = \left(\frac{\delta U}{\delta T}\right)_V C_{P^*}\left(\frac{\delta H}{\delta T}\right)_P$.
*	Extensive Properties: Volume, Number of moles, mass, freo energy (9),
	mass, freo energy (4),
	Entropy (S), Enthalpy (H), Internet enorgy (U),
	Heat Capacity.
*	Intensive Properties: Molar volume, density,
	reloactive index,
	surface tension, viscoerty, free energy/mole,
	surface tension, viscoerty, free energy/mole, specific heat, pressure, temperature, BP, FP.
*	Exothermic reaction - EH (product) < EH (reactant)
	Enclothermic reaction - Ett(product) > Ett (reactant)
9	Hoss's Law - Total enthalpy change is equal to the sum of
	sequence reaction's? enthalpy charge.
	AH° = ZAHs (products) - ZAHs (reactants)
	(standard state - 1 atm; 101.325 kPa & 298 k is assigned a zero value).
	is assigned a
*	Karcheff's equins: $\Delta C_p = \frac{\Delta H_2 - \Delta H_1}{T_2 - T_1}$
	$T_2 - I_1$
	$\Delta C_{v} = \frac{\Delta U_{2} - \Delta U_{1}}{T_{2} - T_{1}}.$
*	Trouton's Rule: Entropy of raporisation of
	how assault and an how
	dessociated inquid es constant & may be
	dessociated inquid es constant & may be taken as 87.3 J/mark
Al and the West	

* Average bond energy:
$$\frac{\Delta H_{f}}{no. v_{f}} - bonds$$

$$ris an activitive property.$$
*
$$\Delta S = \frac{q_{rov}}{T} \left[q_{rov} - bat sufficed isothermally \\ k - reversibly].$$
*
$$dS = \frac{q_{rov}}{T} \left[q_{rov} - bat sufficed isothermally \\ k - reversibly].$$
* for reversible engine,
$$\frac{q_{1}}{T_{1}} + \frac{q_{2}}{T_{2}} = 0$$

$$bor reversible engine,
$$\frac{q_{1}}{T_{1}} + \frac{q_{2}}{T_{2}} < 0.$$
*
$$\Delta S = nC_{V} \ln \frac{T_{5}}{T_{1}} + nR \ln \frac{V_{0}}{V}.$$
*
$$dS = nC_{V} \ln \frac{T_{5}}{T_{1}} + nR \ln \frac{V_{0}}{V}.$$
*
$$dH = nC_{p}\Delta T = q_{V}.$$

$$\Delta S = nC_{V} \ln \frac{T_{5}}{T_{1}} + nR \ln \frac{V_{0}}{V}.$$
*
$$dH = C_{p}\Delta T.$$

$$\Delta S = nC_{V} \ln \frac{T_{2}}{T_{1}} + nR \ln \frac{V_{2}}{V_{1}} (rrevest)$$
*
$$dS = nC_{V} \ln \frac{T_{2}}{T_{1}} + nR \ln \frac{V_{2}}{V_{1}} (rrevest)$$
*
$$dS = nC_{V} \ln \frac{T_{2}}{T_{1}} + nR \ln \frac{V_{2}}{V_{1}} (rrevest)$$

$$\Delta S = nC_{V} \ln \frac{T_{2}}{T_{1}} + nR \ln \frac{V_{2}}{V_{1}} (rrevest)$$

$$\Delta S = nC_{V} \ln \frac{T_{2}}{T_{1}} + nR \ln \frac{V_{2}}{V_{1}} (rrevest)$$

$$\Delta S = nC_{V} \ln \frac{T_{2}}{T_{1}} + nR \ln \frac{V_{2}}{V_{1}} (rrevest)$$

$$\Delta S = 0 (reversible).$$
*
$$\Delta q^{0} = -2.303 R T \log K_{eq}$$

$$\Delta q^{0} = W max (for reversible change [F][T]).$$

$$\Delta q = -nFE_{call}$$
*
$$(\log \frac{P_{2}}{P_{1}} = \frac{\Delta H}{2.303R} [\frac{1}{T_{1}} - \frac{1}{T_{2}}] [liquides gas explicitoring p_{1}^{2} - nFE_{call},$$
*
$$\Delta S^{0} = \Sigma S^{0} (products) - \Sigma S^{0} (recctarts).$$$$

Thermodynamics.
Formula Sheet
* Nork done for reversible process;
$$W_{n} = -p \sigma^{2V}$$

* Wisotherman = $-nRT \ln \frac{V_{2}}{V_{1}} = -nRT \ln \frac{P_{1}}{P_{2}}$
Wisobaric = $-P_{q} \Delta V$; Wisochoric = 0.
Nadiabetic = $\int_{T-1}^{1} (P_{2}V_{2} - P_{1}V_{1}) = \frac{nR}{T-1} (T_{2} - T_{1})$.
* $dU = 8Q + 8N$
* $Q = Q m \Delta T$; $Q = nC_{m}\Delta T$
 $C_{V} = Rec \frac{1}{n} \frac{\Delta U}{\Delta T}$; $C_{P} = \frac{1}{n} \frac{\Delta H}{\Delta T}$, $\Delta H = nC_{P}\Delta T$.
 $\Delta U = nC_{V}\Delta T$; $\Delta U = nc_{P}\Delta T - nR\Delta T$.
* for Bomub Calorenmeter, $\Delta U_{Sys} + Q_{Woter} = 0$
 $nC_{V}\Delta T_{Sys} = -mC_{Woter} \Delta T$ water
* for Adiabetic Process, $PV^{*} = const$.
 $T^{\sigma}p^{1-\sigma} = const$.
* $\Delta H = \Delta U + P\Delta V$ $Q_{P} = \Delta U + P\Delta V$
 $\Delta H = \Delta U + (\Delta n_{g})RT$
* $g = \int \frac{dQ_{rev}}{T}$; $\Delta s = nc_{V} \ln \frac{T_{2}}{T_{1}} + nR \ln \frac{V_{2}}{V_{1}}$
 $\Delta S = nc_{P}\ln \frac{T_{3}}{T_{1}} + nR \ln \frac{P_{1}}{P_{2}}$.
* $\Delta q_{sys} = \Delta H sys - T\Delta S sys$.
* $dq = Vdp - SdT (reversible change fin preduce)$.
 $dq = nRT \ln \frac{V_{1}}{V_{2}} = nRT \ln \frac{P_{2}}{P_{1}}$ (for forthermax boxes).