

Handwritten Notes
On
Area under the curve

Area Under the curve

$$
\text { * }=\int_{a}^{b} g d n=\int_{a}^{1} f(n) d n=\Delta
$$

Algefric sum of Area bounder by curve $y=f(n)$ and ordinate $n=a$ and $n=1$

$$
y=f(n) \text { Actual Area }
$$

$$
\begin{aligned}
\int_{a}^{b} f(n) d n=10 & +(-4) \\
& =6 .
\end{aligned}
$$

* formula!

1. If Curve $y=f(n)$ completely lie above n-anix then area bounded by curve, n-axis and lines $n=a$ and $n=b$.
(i)

(ii)

If fig. is this then Area bounded

$$
\text { Ar. } B=\left|\int_{a}^{d} f(n) d n\right| \mid
$$

(ii) if path of curve lie above and below
(2) axis

For More PDFs Visit: LearningMantras.com
than area bounoled.

$$
A=\left|\int_{a}^{c} f(x) d n\right|+\int_{c}^{1} f(n) d x
$$

(3)

$$
y=x^{2} \Rightarrow x=\sqrt{y}
$$

fen)

* Area bounded le Curve $n=g(y), y$-axis and the lines $y=c$ and $y=d$

$$
\begin{aligned}
& \Delta_{1}=\int_{a}^{d} g(y) d y \\
& \Delta_{2}=\int_{a}^{b} f(n) d n . \\
& \Delta_{1}+\Delta_{2}=b d-a c .
\end{aligned}
$$

(4)
(4)

$$
\Delta=\int_{n=a}^{n=1}(f(n)-g(n)) d n
$$

Area bounded b/w two curve

Sam!

$$
\Delta=\int_{n=a}^{n=3}(f(n)-g(n)) d n \text {. }
$$

*

$$
\text { Area bounded } \left.=D_{1}+\Delta_{2}=\int_{a}^{c} f+g\right) d n+\int_{c}^{b}(g-f) d n
$$

or

$$
=\int_{a}^{b}|f-g| d n
$$

Que: find $A B \quad y=\ln n, n=1, n=2$ and x amin.

2.) $f A B \quad y=\ln n \quad n=\frac{1}{e}, n=e, n$-am

Que. $f A B \quad y=e^{n}, n=0, y=e, n>0$

For More PDFs Visit: LearningMantras.com
(1H-2)

$$
\begin{aligned}
& A=\int_{1}^{1} \ln y d x \\
& A=1 \cdot e-\int_{0}^{1} e^{x} d x
\end{aligned}
$$

Que: $f A B=\begin{aligned} & y^{2}=n \\ & 2 y=n\end{aligned}$

Q.

$$
\begin{gathered}
f A B= \\
x^{2}+y^{2}=4 \\
x=13 y
\end{gathered}
$$

finst quad. n anin

$$
x=F_{3} y .
$$

$$
\Rightarrow \lambda=\beta y
$$

$$
x x 0=
$$

$$
\Delta_{2}=\int_{\sqrt{3}}^{2} \sqrt[2]{4-x^{2}}
$$

$$
A=\int
$$

$$
A=\int_{13}^{2} \sqrt{4-x^{2}} d x
$$

$M-2$

$$
2 \pi=\pi(2)^{2}
$$

$$
\therefore \quad \quad^{\varepsilon}=\frac{4 \pi}{2 \pi}
$$

$$
\therefore \quad \frac{\pi}{6}=\frac{\pi}{6} \times \frac{4 / 1}{2 \pi}=\frac{\pi}{3} \quad \mathrm{An} .
$$

$$
\begin{gathered}
y=\cos n \\
n=0 \\
n=\frac{\pi}{2}
\end{gathered}
$$

$$
\text { \& A f } A B \quad \begin{aligned}
y & =\sin n \\
y & =\cos n \\
n & =0 \\
n & =\frac{\pi}{9}
\end{aligned}
$$

$A-\int \frac{\pi / 2}{\pi} d x$

$$
A=\int_{0}^{\pi / 4}(\cos n-\sin n) d n \quad A=
$$

$$
A=\int_{0}^{\pi / 2} \sin x d x
$$

$$
\begin{aligned}
& \operatorname{er} n-\sin n) d n \\
& +\int_{\pi / 4}^{\pi / 2}(\sin n-\cos n)
\end{aligned}
$$

Q. $A A B$

$$
\begin{gathered}
y=\sin n \\
y=\operatorname{com} \\
n=0 \\
x=\frac{\pi}{2}
\end{gathered}
$$

$$
n \text {-anis. }
$$

$$
\int_{0}^{\pi / 4} f(x-\sin) x+\int_{\pi / 4}^{\pi / 2}+\sin d x+
$$

For More PDFs Visit: LearningMantras.com

$$
A=\int_{0}^{\pi / 4} \sin x d x+\int_{\pi / 4}^{\pi / 2} \cos x d x
$$

Que:-

$$
|m|+|y| \leq 4
$$

$$
A=\int_{0}^{1}
$$

Q. $F A B=\quad|n|+|y| \geq 2$ \& $n^{2}+y^{2} \leq 4$

$$
\begin{aligned}
& =\Delta_{1}=\frac{1}{2} \cdot 2 \cdot 2=2 \\
& 4 \Delta_{1}=8 \\
& =\pi(2)^{2}-4 \Delta_{1} \\
& =4 \pi-8
\end{aligned}
$$

Que.

Q FAB $\quad 2 \leq x^{2}+y^{2} \leq 4 ? x^{2}+y^{2} \leq 4$.

$$
\begin{aligned}
& A=\frac{1}{2}+2 \times 2=2 \\
& A=\pi\left(2 r^{2}=2 \pi\right. \\
& A=\pi(2)^{2}-\pi\left(r_{2}\right)^{2} \\
& 4 \pi-2 \pi=2 \pi
\end{aligned}
$$

Q. $F A B:|y|=\sin n \quad n \in(0,47)$

$$
\begin{aligned}
& A=\int_{0}^{\pi} \sin n d x+\int_{2 \pi}^{2 \pi} \sin n d x=8 A=\cos \pi-\cos \theta \\
& \int_{0}^{\pi / 2} \sin n=1 \\
& s_{0}=1 \times 8=8
\end{aligned}
$$

Q. $F A B=y=n^{2}$

$$
y=\frac{2}{1+n^{2}} \quad=n= \pm 1
$$

$$
\begin{aligned}
& y=\frac{2}{1+x} \\
& y=\frac{2}{1+x^{2}} \\
& =x=1 \quad y=-1 \\
& x=2=y=\frac{1}{5}=0.4 \\
& x=\sqrt{3}, 4=2 \\
& x=3=1, \frac{2}{10} \\
& x=5=4 \\
& x=-1, y=1
\end{aligned}
$$

Q. $F A B=\quad y=\ln \mid-1$

$$
A=2 \int_{0}^{1}\left(\frac{2}{1+n^{2}}-n^{2}\right) d n
$$

$$
A=\frac{1}{2} \times 4=2=
$$

For More PDFs Visit: LearningMantras.com

Tue: $A A B y=\sqrt{1-n^{2}}$

$$
y=n^{3}-n \quad=n\left(n^{2}-1\right)=n(n-1)(x+1)
$$

Qa:-

$$
A=\frac{\pi}{2} \quad=\frac{\pi(1)^{2}}{2}=\frac{\pi}{2}
$$

Que! $[n]+[y]=2 \quad n, y \geq 0$
$A A B=$

$$
A=1+1 \neq 3
$$

Note 1 Standard Area to be Remem beied.
(1)

$$
\begin{aligned}
& y^{2}=4 a n \\
& n^{2}=4 b y
\end{aligned}
$$

(2)
$A B$ by

$$
\begin{gathered}
y^{2}=4 a n \\
y=m n
\end{gathered}
$$

(3) $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$

$A=\pi a b$
ole:
(Area Remains invasont even if the cordinate axis are shifted.
Hence shifting of origin inmangas proves to very convinieut. in Computing Areas

$$
\begin{aligned}
& \max \{x, y\}=\frac{n+y}{2}+\left|\frac{n-y}{2}\right| \\
& \min \{x, y\}=\frac{n+y}{2}-\left|\frac{n-y}{2}\right|
\end{aligned}
$$

\Rightarrow find $A B \quad y^{2}=8 n$

$$
n^{2}=12 y .
$$

For More PDF Visit: LearningMantras.com
$Q A A B$ bs

$$
\begin{aligned}
& y=2 \sqrt{x} \\
& x=-\sqrt{y}
\end{aligned}
$$

$$
=y^{2}=4 x
$$

$$
x^{2}=y
$$

No Bounded reison form.
Que:

$$
\begin{aligned}
& \text { Q: } \quad n=\sqrt{-y}, \text { liein the Ande } \\
& y=-\sqrt{-x} \text { Le in s्वा मund } \\
& x^{2}=-y^{2} \\
& y^{2}=-x
\end{aligned}
$$

Que.: $\quad \begin{aligned} & \\ & n^{2}+2 n-2 y+2 y+4 n+5\end{aligned} y^{2}-2 x$

$$
\begin{gathered}
n^{2}+2 n-y+2=0 \\
y^{2}-2 y+4 n+4+1=0 \\
(y-1)^{2}+4(n+1)=0 \\
n^{2}+2 n-y+1+1=0 \\
\left(y^{8}(n+1)^{2}-(y-1)=0\right. \\
(n+1)^{2}=(y-1) \\
(y-1)^{2}=-4(n+1) \\
y-1=y=0 \quad y=1 \\
x+1=x=0 \quad n=-1
\end{gathered}
$$

$$
x x^{2}=y \Rightarrow(n+1)^{2}=(y-1)
$$

$$
y^{2}=-4 x \Rightarrow(y-1)^{2}=-4(n+1)
$$

$$
a=\frac{1}{4} \quad b=1
$$

$$
A=\frac{16 a b}{3} \Rightarrow \frac{4}{3} A
$$

$$
\begin{gathered}
Q=|n-1|+|y+3| \leq 4 \quad f A B \\
x-1=x \\
y+3=y \\
\text { Area }=32 .
\end{gathered}
$$

Q. $f A B$ by $y^{2}=16 n \quad y=4 \sqrt{x}$

$$
x=0, y=0
$$

$$
\begin{aligned}
& n=1, y=-2
\end{aligned}
$$

$$
n=2, y=-4
$$

$$
D=\frac{8 a^{2}}{3 m^{3}}=\frac{8.16}{3.8}=\frac{16}{3}
$$

$$
\begin{aligned}
& y^{2}=16 n \\
& y=2 n
\end{aligned}
$$

Same as

Because has symmetical about n-ares.
Q. $A A B$ by

$$
n^{2}=8 y
$$

$$
x y=\frac{x^{2}}{8}
$$

$$
\begin{aligned}
& x=1=y=8 \\
& n=0=y=0
\end{aligned}
$$

$$
n^{2}=
$$

Ale $\quad y^{2}=8 n$

$$
y=2 n
$$

$$
A=\frac{8.4}{3.8}=\frac{4}{3}
$$

Note: Area bounded by $x^{2}=8 g \$ 2 y=n$.
and $A B$ by curve $y^{2}=8 n$ \& $y=2 n$ will be Came.
Que: $f A B$

$$
n^{2}=y \quad \& \quad y=|n|
$$

$$
\begin{aligned}
& A=1, a=\frac{1}{2} \\
& A a^{3} \\
&=\frac{8 \cdot \frac{1}{a}}{3}=\frac{2}{3}
\end{aligned}
$$

$$
=2 \int_{0}^{1} 1 n
$$

$$
=2 \times\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)_{0}^{1}
$$

a $f A B=x^{2}=2 y * y=|n|$

$$
\begin{aligned}
& \frac{2 \times \frac{1}{2}-\frac{1}{3}}{2 \times \times \frac{3-2}{6}}=\frac{2 \times \frac{1}{6}}{6}=\frac{1}{3} A \\
& 1 A=\frac{1}{3} A=
\end{aligned}
$$

For More PDFs Visit: LearningMantras.com
\square $\frac{\text { LJ.A and J. Me }}{\substack{\text { an } \\ 0-1 \\ \hline}}$

* (i) Average Value of $f^{n} \quad y=f(n)$ in the interval $n \in[a, b]^{\circ}$ is define ass

$$
y_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(n) d n
$$

average value can be tue, $-v e$, or zelo.
(ii)

(ii) if f^{4} is define in the int. $x \in(0, \infty)$

$$
y_{\text {avg }}=\lim _{b \rightarrow \infty} \frac{1}{b} \cdot \int_{0}^{b} f(x) d x
$$

(iii) Root means syyars
(iii) Rms value of g average

$$
r_{\text {avg }}=\left[\frac{1}{b-a} \int_{a}^{b} f^{2}(n) d n\right]^{1 / 2}
$$

* Determination of Perametel:-

Sues find vale of C for whin $A B$ by curve
$y=\frac{4}{n^{2}}, \quad n=1, \quad y=C$ is equeet to $\frac{q}{4}$

An

$$
\begin{aligned}
& y=\frac{4}{n^{2}} \\
& n 0 \\
& n=1=4 \\
& A= \\
& x=1, y= \\
& \int_{2}^{1}\left(c-\frac{4}{n^{2}}\right) d n=\frac{9}{4}
\end{aligned}
$$

or

$$
\frac{9}{4}=\int_{1}^{2 / 8}\left(\frac{4}{n^{2}}-c\right) d n
$$

Qu:2 let $f \circ n$ is non ", we cont. fy such that $A B$ by curve $y=f(n), n$ axis and the urdicial $x=\frac{\pi}{4}$ and $x=\beta\left(B>\frac{\pi}{4}\right)$
is equal to $\beta \sin \beta+\frac{\pi}{4} \cos ^{4}+\sqrt{2} \beta$
Then find $f\left(\frac{\pi}{4}\right)$

$$
=\int_{\pi / 4}^{\beta} f(x)=\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta
$$

diff wort B.

$$
\begin{aligned}
& f(B)=\beta \cos \beta+\sin \beta-\frac{\pi}{4} \sin \beta-\frac{\pi}{4} \sin \sin +\sqrt{2} \\
& f\left(\frac{\pi}{4}\right)=\frac{\pi}{4} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{\pi}{4} \frac{1}{\sqrt{2}}+\sqrt{2} \\
& =\sqrt{2}+\frac{1}{\sqrt{2}} \text { Ans }
\end{aligned}
$$

Q. The $A B$ by certain graph from 0 to x is given ley

$$
A=\sqrt{1+3 n-1}, \quad n \geq 0
$$

find intantinaies sate of change of A with or n at $n=5$

$$
A=\int_{0}^{n} f(n) d n=\sqrt{1+3 n}-1
$$

$$
A=(1+3 n)^{1 / 2}-1
$$

(ii) flud Average of Rate of change wit x as x increases prem 1 to 8 .

Average bat of chang 1 to 8 .

$$
=\frac{\int_{\frac{1}{8-1}}^{b} \mathrm{fom}}{8-1}
$$

(iii) find Average value of fo in

$$
\left(n=\int_{1}^{8} \frac{3}{8} \frac{111}{x}+x=\frac{3}{8}[x]_{1}^{8}\right.
$$ $m \rightarrow(1,3)$

$$
n^{2}-2 n+2
$$

0
$\frac{\text { Note }}{}$
Ques: $y=f(m)$ is monotonic f^{a} in (a, b) the $A B$ by ordinatesat $n=a, n=b \quad y=f(n)$ and

Cue If $A B$ be Curve $f(x)=\frac{x^{3}}{3}-x^{2}+9$ and the lines $n=0 \quad n=2$, and n axis is minimum then find A

For More PDF Visit: LearningMantras.com tn s

* Area Under the Image of f^{\prime} :

Que: Let $f(m)=\tan x$ and $g(n)$ is is invert. Find $A B$ by $y=g(n)$, n axis and molinat $n=-1$, and $n=\sqrt{3}$.

Method-2:
$f(n)$ mirror image of $f(n)$ is area is same of the $f^{-1} \mathrm{~cm}$

Hew Af. Advance.

$$
\int_{0}^{\pi}(\sqrt{3}-\tan x) d x+\int_{-\frac{\pi}{4}}^{0}(\tan x-(-1) d y=
$$

(ii) Let $f(n)=n^{3}+3 n+2$ and $g(n)$ is its inverse. Find A Bud $y=g \mathrm{~cm}, x$ axis and the ordinate at $n=-2, \quad$ at $n=6$.

$$
f^{\prime}(n)=3 n^{2}+3>0 \Rightarrow f \text { is } m f f^{4} \text {. }
$$

$$
\left.\int_{-1}^{x^{3}+\beta n p-1} \int_{0}^{1}(6-f(n)) d n+\int_{-1}^{0} f(n)-(-2)\right) d n
$$

